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1. Abstract 

Alzheimer’s disease (AD) is a neurologic ailment that causes the brain to 
atrophy and brain cells to die over time. AD is the most prevalent form 
of dementia, which is a gradual decrease in cognitive, behavioral, and 
social abilities that impairs a person’s capacity to operate independently. 
In this study, bioinformatics analysis was conducted to look into 
possible miRNA-mRNA couples implicated in the etiology of AD to 
find DEmiRNAs and genes unique to Alzheimer’s disease. Two suitable 
datasets (GSE18309 and GSE16759) from peripheral blood mononuclear 
cells (PBMCs) and the parietal lobe of AD patients were selected from 
the GEO database. Then, we used the online enrichment databases to 
evaluate signaling pathways, gene ontology, protein networks, and hub 
miRNAs. We Also used Cytoscape to design the interactive networks. 
Our results showed that, hsa-mir-765, hsa-mir-575, hsa-mir-425 3p, 
hsa-mir-198, hsa-mir-602, hsa-mir-601, hsa-mir-454-3p, hsa-mir-558, 
hsa-mir-448, and hsa-mir-542-5p were prominent role in exacerbate of 
AD. It was discovered that an abundance of miRNA-mRNA interactions 
implicated in synaptic transmission, aberrant protein degradation, and 
apoptosis. Additionally, EGF, ESR1, DLG4, CTTN, WASL, FN1, JUN, 

CDKN2A, and PRKCA gene expression in Alzheimer’s disease patients 
was considerably reduced in PBMCs. This study adds to our knowledge 
of the hsa-mir-765, hsa-mir-575, hsa-mir-425 3p, and hsa-mir-198 that 
may underlie Alzheimer’s disease and identifies novel diagnostic and 
therapeutic targets for the disease.
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3. Introduction 

Alzheimer’s disease (AD), a degenerative brain disease that primarily 
affects the elderly, now has no cure. In addition to the individual who has 
it, many individuals may be affected by this terrible neurological illness. 
As the world’s elderly population ages, Alzheimer’s disease treatment 
grows more expensive. As a result of these concerns, many academics are 
eager to learn more about this sickness. Many organizations worldwide 
work to detect and prevent Alzheimer’s disease as early as possible[1]. 
The only way to cure or prevent a disease is to understand the molecular 
pathways that lead to it and to use numerous biomarker-disease network 
approaches[2]. Cancer, diabetes, and Alzheimer’s disease research 
increasingly rely on molecular mechanisms. The majority of notable 
studies use microarrays and next-generation sequencing (NGS). Several 
deep inquiry investigations have used various ways of selecting features 
or reducing dimensions [3, 4]. In-silico analysis and some relevant studies 
that have employed this methodology are essential for understanding our 
approach in this article. The gene expression profiles describe patterns 
in microarray data generated through gene correlation. A system biology 
approach was used in this study. Use this repository tools to build networks of 
co-expression and gene connections. The measurement values for module 
membership, topological properties, and intra-modular hub genes can also 
be calculated. Numerous biomarkers for Alzheimer’s disease have been 
proposed in this field. It’s pretty improbable that a cure will be discovered 
shortly. As a result, many people are unaware of the underlying biology 
and genetics. Bioinformatics researchers recently investigated gene 
targets and related pathways in the context of Alzheimer’s disease. This 
study aims to investigate the molecular mechanisms in the progression of 
Alzheimer’s along with the regulatory elements of miRNAs in this disease 
so that better diagnostic and therapeutic strategies can be suggested.

4. Methods 

4.1 Microarray data
The GSE18309 and GSE16759 gene expression profile datasets were 
obtained from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). The dataset GSE18309 based on the 
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platform of GPL570 [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array contains transcriptomes of mononuclear peripheral 
blood cells from three patients with Alzheimer’s disease and three normal 
controls. Microarray dataset GSE16759 using GPL8757 USC/XJZ 
Human 0.9 K miRNA-940-v1.0 contains four patients with Alzheimer’s 
disease and four normal controls.

4.2 Data processing
In this study, GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) has been 
applied to screen for miRNAs and DEGs expressed differently between 
Alzheimer’s patients and normal controls. [5]. In the present study, 
differentially-expressed miRNAs and mRNAs between Alzheimer’s 
disease and normal controls were screened using a P-value < 0.05 and 
a fold-change of > ±1 as the threshold values. Gene Ontology function 
and enrichment analysis of KEGG pathways was performed on a database 
for annotation visualization and integrated discovery (DAVID) 20 online 
analytical tools[6]. The GO terms and KEGG pathways with a P-value 
less than 0.05 were identified.

4.3 Protein-protein interaction (PPI) network
High-quality protein interaction networks can provide critical insights into 
cellular systems’ functional and biological properties. The PPI network of 
DEGs was constructed using STRING [7] with a combined score of >0.4 
and Next, visualize the PPI network with Cytoscape v3.9.1 (http://www.
cytoscape.org/) software. Nodes with excellent connectivity are more 
likely to maintain the overall stability of the network. We use cytoHubba 
[8] to determine the degree of every protein node. This study identified 
nine hub genes by four algorithms (EcCentricity, Closeness, Radiality, 
Betweenness).

4.4 Identifying the hub genes associated with AD
The Comparative Toxicogenomics Database [9] (CTD; http://ctd-base.
org/) is a robust open-source database for analyzing associations between 
gene products and human diseases. As part of our study, we used this 
online database to find the link between these identified vital genes and 
AD. 

4.5 Prediction of miRNA 
miRNAs upstream from critical genes were predicted using the miRWalk 
database [10] (http://mirwalk.umm.uni-heidelberg.de/) for predicting 
putative miRNAs. After isolating clusters of regulated genes upstream and 
downstream, the miRNAs of each were initially identified, then miRNAs 
associated with high expression and miRNAs with low expression. We 
shared the second set of data and vice versa. The study of expression 
correlation between miRNAs and their targets is crucial to elucidate the 
potential biological functions of miRNAs.

4.6 Prediction of Potential Transcription Factors and Target Genes 
of DE-miRNAs
The transcription factors upstream of DE-miRNAs were predicted by 
FunRich software [11]. We enter upregulated and downregulated DE-
miRNAs for their upstream transcription factors and present the top 10 

transcription factors based on the P-value.
miRNet is an easy-to-use web-based tool used to predict the downstream 
target gene of DE-miRNAs. We enter upregulated and downregulated DE-
miRNAs for their downstream target genes.

5. Results

5.1 DEGs and DEmiRNAs
A total of 1549 DEGs were obtained in severe Alzheimer’s disease 
compared with control samples, of which 648 mRNA were down-
regulated, and 901 mRNA were up-regulated. In addition, 190 DEmiRNAs 
were identified in the Alzheimer’s disease samples compared with control 
samples, of which 85 miRNAs were down-regulated, and 74 miRNAs 
were up-regulated.

5.2 Significant functions and pathway enrichment analysis
Gene Ontology functional enrichment indicated that DEGs were 
significantly enriched into GO terms such as extracellular matrix structural 
constituent, integrin binding, 3’,5’-cyclic-nucleotide phosphodiesterase 
heparin-binding, and potassium channel activity. The top 5 GO terms 
are listed in (Figure 1). Besides, KEGG analysis revealed five enriched 
KEGG pathways: ECM-receptor interaction, Nicotine addiction, Focal 
adhesion, Morphine addiction, and Pathways in cancer (Figure 1).

Figure 1: Graph depicting GO Biological processes categories and 
KEGG pathway analysis evaluated by David database. If there were >5 
terms enriched by DEGs in this category, the top 5 terms were selected 
according to the P-value. Count refers to the number of genes significantly 
improved in this term. DEGs, differentially expressed genes; GO, gene 
ontology; BP, biological process; CC, cellular component; MF, molecular 
function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

5.3 PPI network construction and identification of hub genes
The PPI network of the DEGs was constructed using STRING and 
Cytoscape (Fig. 2A and 2B). Four algorithms (Betweenness, Closeness, 
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Radiality, and EcCentricity) were employed for each up-and down-
regulated gene to search for hub genes (Fig. 2C and 2D), which the 
genes were selected based on the mentioned algorithms for up-and 
down-regulated genes was including Epidermal Growth Factor (EGF), 
(Estrogen Receptor 1 (ESR1), Discs Large MAGUK Scaffold Protein 
4 (DLG4), Cortactin (CTTN), WASP Like Actin Nucleation Promoting 
Factor (WASL), and for the down-regulated genes we found Fibronectin 
1 (FN1), (Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN), 
Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A), Protein Kinase C 
Alpha (PRKCA), based on four mention algorithm of cytohubba plugin. 
(Table 1). The CTD database showed that the hub genes targeted AD-
related diseases (Fig. 3).

Figure 2: Relationship between DEGs. (A) Up-regulated genes (B) down-
regulated gene in the PPI Network. The larger the number of connections 
in the PPI network, the more likely the interaction. The red ones are nodes 
in the synapse pathway. +The blue ones are nodes in the signal pathway. 
(C) Common hub genes were identified using different algorithms for up-
regulated genes. (D) Common hub genes were identified using different 
algorithms for down-regulated genes.

Figure 3: Common hub genes of the PPI network. The CTD database 
showed that the hub genes targeted AD-related diseases.

Table 1: Summary of hub genes.

Symbol Function

EGF
GO:0000186 activations of MAPKK activity, GO:0042327
 positive regulation of phosphorylation, GO:0002092 
positive regulation of receptor internalization

ESR1

GO:0000122 negative regulation of transcription by RNA
 polymerase II, GO:0007165 signal transduction,
 GO:0030520 intracellular estrogen receptor signaling 
pathway

DLG4
GO:0007204 positive regulation of cytosolic calcium ion
 concentration, GO:0007268 chemical synaptic
 transmission, GO:0007399 nervous system development

CTTN
GO:0030041 actin filament polymerization, GO:0030426
 dendrite, GO:0030516 regulation of axon extension

WASL
GO:0030050 vesicle transport along actin filament, 
GO:0007015 actin filament organization, GO:0030695 
GTPase regulator activity

FN1
GO:0002576 platelet degranulation, GO:0005102
 signaling receptor binding, GO:0007399 nervous system 
development

JUN

GO:0000122 negative regulation of transcription by RNA 
polymerase II, GO:0001836 release of cytochrome c from 
mitochondria, GO:000828 positive regulation of cell 
population proliferation

CDKN2A
GO:0008285 negative regulation of cell population 
proliferation, GO:0016310 phosphorylation, GO:0007265 
Ras protein signal transduction

PRKCA
GO:0004674 protein serine/threonine kinase activity, 
GO:0004698 calcium-dependent protein kinase C activity,
 GO:0006468 protein phosphorylation

5.4. Prediction of potential target miRNAs
According to established miRNA regulatory mechanisms, the up-
regulated miRNAs were considered to target down-regulated DEGs and 
down-regulated miRNAs to target up-regulated DEGs. Here we identified 
nine hub genes from DEGs based on four algorithms (Betweenness, 
Closeness, Radiality, and EcCentricity), which up-regulated genes 
included EGF, ESR1, DLG4, CTTN, WASL, and down-regulated genes 
included FN1, JUN, CDKN2A, PRKCA. The Target miRNAs of hub 
genes were predicted using the miRWalk 2.0 tool (Table 2). Common 
miRNAs were identified between up-regulated DEMs from GSE16759 
and target miRNAs of down-regulated hub genes. Similarly, overlapping 
miRNAs between down-regulated DEMs from GSE16759 and target 
miRNAs of up-regulated hub genes were obtained by using the Venn 
diagram. (Fig. 4).
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Figure 4: Common DEMs between GSE16759 and target miRNAs of 
hub genes. There are common miRNAs between upregulated DEMs from 
GSE16759 and target miRNAs of downregulated hub genes. Common 
miRNAs between downregulated DEMs from gseGSE16759 and target 
miRNAs of upregulated hub genes. Potential target genes of DE-miRNAs 
predicted by databases: Red represents up-regulation, and blue represents 
down-regulation. Predicted transcription factors of DE-miRNAs.

Table 2: Target miRNAs of hub genes.

Up-regulated
genes

Target miRNAs
 of up-regulated 
hub genes

Downregulated 
genes

Target miRNAs
of downregulated 
hub genes

EGF 317 FN1 87
ESR1 1098 JUN 257
DLG4 692 CDKN2A 273
CTTN 235 PRKCA 861
WASL 160

5.5. Prediction of upstream transcription factors of DE-miRNAs.
We predicted the upstream transcription factors of up-and down-regulated 
DE-miRNAs with the highest degrees in the regulatory network through 
the TransmiR v2.0 database, the top transcription factors are presented in 
Figures 4, respectively. The top common transcription factors according 
to the p-value of predicted TFs for hsa-mir-765 and hsa-mir-454-3p were 
POU5F1, MYH11, RBBP5, GATA4, and E2F4.

5.6. Target prediction and analysis of candidate DEmiRNAs
The target genes of 10 potential up- and down-regulated DE-miRNAs 
were successively predicted by miRNet. As shown in Table 3, we got 655 
and 725 predicted targets of the up- and down-regulated DE-miRNAs, 
respectively. For the six up-regulated DEmiRNAs, hsa-mir-765 was found 
to potentially target the most genes, with the number of 350. For the four 

down-regulated DE-miRNAs, hsa-mir-454-3p possessed the most targets, 
which number is 396. miRNA-mRNA networks were established using 
the miRNet database for better visualization, as depicted in Figure 4.

Table 3: The target number of the upregulated and downregulated DE-
miRNAs.

Up-regulated 
DE-miRNA          

Number Down-regulated DE-miRNA                Number

hsa-mir-765 350 hsa-mir-454-3p 396
hsa-mir-575 130 hsa-mir-558 196
hsa-mir-425 3p  48 hsa-mir-448 99
hsa-mir-198 74 hsa-mir-542-5p 34
hsa-mir-602 31
hsa-mir-601 22

6. Discussion 

Researchers have turned to blood-based biomarkers for the early 
identification of Alzheimer’s disease, which is less invasive and less 
expensive than Cerebrospinal Fluid (CSF) or neuroimaging approaches. 
As a result, they may be utilized in routine medical exams worldwide. 
The amount and stability of miRNAs in the blood are among the most 
promising ways of discovering peripheral AD biomarkers[12-14]. 
Several studies have identified several miRNAs as potential biomarkers 
for detecting AD [15, 16]. Some studies have focused on miRNAs that 
regulate specific proteins linked to Alzheimer’s disease, but little attention 
has been dedicated to miRNAs that modulate synaptic proteins. In the 
current study, several miRNAs have been investigated to regulate synaptic 
proteins, particularly glutamatergic synapses. As a result, our findings 
add to the growing evidence that miRNAs can be used as biomarkers 
for Alzheimer’s disease, so we did this study. In this study, based on 
continuous bioinformatics analyses, we obtained genes selection and, 
in parallel, the associated miRNAs. Accordingly, high-expression EGF, 
ESR1, DLG4, CTTN, WASL, and low-expression FN1, JUN, CDKN2A, 
and PRKCA were observed in the first part.

Alzheimer’s disease behavioral and pathological symptoms are worsened 
by inhibitors of the epidermal growth factor (EGF) receptor. Due to 
numerous unexplored downstream signaling pathways, epidermal growth 
factor receptor inhibitors have not yet been proven neuroprotective 
in established animal models. In clinical trials, this sparked a debate 
concerning epidermal growth factor receptor inhibitors [17]. Cellular 
proliferation and differentiation are affected by ESR1 and its receptors. 
Nuclear transactivation occurs by direct homodimer binding to a 
palindromic ERE sequence or connections to other DNA-binding 
transcription factors, including ATF-2, c-Jun/c-Fos, SP1, and SP3. The 
coactivator complex has an LXXLL motif on each component, which 
helps ligand-binding proteins interact. The estrogen receptor (ER) and 
NF-kappa-B interact differently in different cell types. The IL6 promoter 
lacks RELA/p65 and NF-kappa B, reducing DNA binding and NF-
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kappa B transcription. CCL2 and IL8 promoters could replace CREBBP. 
There are two ERE sequences: RELA/p65 and NFKB1/p50. CREBBP is 
implicated in the mechanism through which NF-kappa-B and CREBBP 
trigger transcription. This substance can activate TFF1 transcription. 
Several membrane-bound kinases have a role in estrogen signaling. 
MTA1 controls BRCA1 and BCAS3 transcription[18]. The significance 
of cholesterol metabolism-related genes in Alzheimer’s disease and mild 
cognitive impairment is unknown. So, Li et al. used targeted sequencing to 
find variants linked to late-onset Alzheimer’s, mild cognitive impairment, 
and APOE regulating cholesterol levels. This low-frequency variant was 
found in three cohorts of 854 late-onset Alzheimer’s disease cases, 1059 
mild cognitive impairment cases, and 1254 controls from nine Chinese 
provinces. This medication appears to reduce ESR1 expression in vitro. 
Those with this variation also exhibited higher serum A1-40 and lower 
levels of plasma total cholesterol[19].

DLG4 encodes an enzyme family known as membrane-associated 
Guanylate Kinase. Heterodimers with another MAGUK protein, DLG2, 
can be found in the NMDA receptor and potassium channel clusters. 
Receptors, channels, and other signaling proteins may create a multimeric 
scaffold in the post-synaptic regions when these two MAGUK proteins 
come together. These transcript variants encode a different isoform of 
this gene[20, 21]. Using hippocampus tissue as a model, Bustos et al. 
investigated the epigenetic landscape of the Dlg4/PSD95 gene and 
devised an approach to target it. G9a, Suvdel76, and SKD were designed 
to suppress transcription, whereas VP64 was intended to stimulate it, 
resulting in synthetic transcription factors or epigenetic editors, including 
the Dlg4/PSD95 zinc finger DNA-binding domain (methylating H3K9). 
Significantly, these epi-editors affected multiple processes of hippocampus 
neuron plasticity by altering key histone marks and, subsequently, Dlg4/
PSD95 expression. An interesting finding was that transduction of the 
artificial transcription factor PSD95-VP64 corrected memory deficiencies 
in elderly and Alzheimer’s disease mice[22]. The loss of CDKN2A has 
been linked to several cancers. Several meta-analyses have looked at the 
prognostic impact of targeted therapeutics, but no such trials have taken 
place. Homozygous deletions inactivate CDKN2A in the vast majority 
of cases. One of the ways CDKN2A can be lost is by hypermethylation 
of the gene’s promoter region. On the other hand, hypermethylation of 
the promoter has mostly undefined prognostic significance. Patients with 
colorectal, liver or younger lung cancer who have hypermethylation 
may have a worse prognosis. But more research is needed before this 
can be widely regarded as an indicator of future health. HPV infection 
is also detected by the expression of CDKN2A (p16). So, CDKN2A 
expression in oropharyngeal and possibly non-oropharyngeal head and 
neck squamous cell carcinomas is a prognostic factor[23]. As a potential 
biomarker for Alzheimer’s disease, Hiroaki et al. investigated the value 
of CDKN2A expression levels in the blood and methylation status 
(AD). An age-related association between CDKN2A mRNA expression 
levels and Spearman’s rank correlation coefficient was established; this 
correlation was statistically significant. Patients with Alzheimer’s disease 
had lower CDKN2A mRNA expression levels in their blood, whereas 
those of healthy controls increased with age. Furthermore, CDKN2A 

mRNA expression levels and methylation rates were only significantly 
and positively associated with AD patients[24].

In the next step, we selected and nominated related miRNAs in the 
expression profile of Alzheimer’s patients. Detailed and comprehensive 
studies on these miRNAs have not been presented to identify or treat 
Alzheimer’s. But in this study, we showed that these hsa-mir-765, hsa-
mir-575, hsa-mir-425 3p, hsa-mir-198, hsa-mir-602, hsa-mir-601, hsa-
mir-454-3p, hsa-mir-558, hsa-mir-448, and hsa-mir-542-5p have a 
significant relationship with other essential genes in the nervous system, 
axon conduction, nerve cell growth, and also cellular aging.

7. Conclusion

Briefly, in this study, we have shown that EGF, ESR1, DLG4, CTTN, 
WASL, FN1, JUN, CDKN2A, PRKCA genes can play a significant role 
in the development of Alzheimer’s disease and that hsa-mir-765, hsa-
mir-575, hsa-mir-425 3p, hsa-mir-198, hsa-mir-602, hsa-mir-601, hsa-
mir-454-3p, hsa-mir-558, hsa-mir-448, and hsa-mir-542-5p  provide us 
with the ability to diagnose or treat the disease so that we can offer better 
therapeutic conditions for Alzheimer’s patients. Of course, to confirm this 
data, more tests are needed in the future to be able to open new windows 
in this direction.
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